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Abstract— This paper considers the results of a study that 
investigated the use of Digital Twin technologies for Electric 
Vehicle propulsion system state of health monitoring. Modern 
vehicles can share large amounts of data in the cloud through 
wireless connections. Digital twins represent an effective 
approach to exploit data-sharing and modern data-driven 
Artificial Intelligence and Machine Learning technologies, 
including vehicle monitoring or driving scenarios analysis. This 
study describes the design and development of a proof-of-
concept digital twin demonstrator, that can detect fault/fault-
free conditions in electric motor components. It can be used to 
assess the overall electric drive Failure Rate and to estimate the 
Remaining Useful Lifetime of the motor. The demonstrator 
developed within a simulation environment has been validated 
over a wide set of simulated operating scenarios demonstrating 
the effectiveness of the proposed approach.  

Keywords—Digital Twin, Electric Vehicle, Electric Motor, 
Artificial Intelligence. 

I. INTRODUCTION 

Digital Twin (DT) technology was defined in 2012 by the 
National Aeronautics and Space Agency (NASA). It is a 
virtual representation of a production system that can run on 
different simulation systems that is characterized by the 
synchronization between the virtual and a real system. This is 
thanks to sensed data and connected smart devices, 
mathematical models, and real-time data elaboration [1]. A DT 
is composed as follows: 

• A real-world physical system continuously monitored by 
sensors and software,  

• A virtual system reflecting real system behaviour, designed 
using data-driven and model-based techniques and updated 
by shared data, and a data flow that ties virtual and physical 
systems in the real and virtual operating spaces. This 
allows continuous updating of the virtual plant model 
according to the real plant system measurements [2]. 

In recent years, several DT-based approaches have been 
studied and proposed for automotive applications including 
intelligence driver assistance, autonomous navigation, Electric 
Vehicle (EV) health monitoring, or battery management 
systems integration [2]. 

A DT demonstrator for EV automotive applications is 
described in the following. The system demonstrates the 
capabilities of DT technologies for monitoring the state of 
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health of modern EV Electric Motors (EMs) [3]. The DT is 
exploited to detect a set of faults in four EMs of the EV, one 
for each wheel [4]. The faults considered affect the EM speed 
sensor, the EM internal insulation and related changes in the 
motor temperature dynamics, and the EM bearing system with 
related vibration dynamics [5]. Each fault has been modelled 
using well-known model-based and data-driven modelling 
methods. The mismatch between the DT virtual model and the 
real-world system data was captured and used to detect fault 
and fault-free operating conditions representing the different 
components of each motor. The analysis of real-world model 
data and virtual model signals was performed by exploiting the 
abilities of modern data-driven fault detection algorithms.  

The data-driven fault detection algorithm output signals 
were used to provide feedback to the user about the status of 
the health of each EM and related subsystems. The fault 
detection system has been integrated with a Remaining Useful 
Life (RUL) [6] and Failure Rate (FR) [7] estimation module, 
to evaluate the loss of RUL and detect the possibility that a 
failure is likely on a particular EM. The demonstrator has been 
validated by testing it while activating/deactivating different 
faults on different EMs. This was over a long-horizon 
simulation scenarios, with vehicle velocities obtained from 
driving cycles (FTP75, US06, WLTP and NEDC) [8]. 

The paper is structured as follows. Section II describes the 
DT demonstrator, Section III presents the models of vehicle 
and Energy Management System (EMS), Section IV presents 
the data analytics module based on data-driven ML fault 
detection and health monitoring algorithms. Section V reports 
test results, and Section VI concludes the paper. 

II. DIGITAL TWIN DEMONSTRATOR  

In this section, the DT demonstrator system is presented.  The 
logical architecture of the system to be emulated is shown in 
Figure 1. The Fault Control Interface is used to 
activate/deactivate faults affecting EMs on the Real-World 
Model of the EV. This interface is composed of a set of 
switches that change the internal structure of the Real-World 
Model so that each EM subsystem can be affected by one of 
the faults.  
 
Data measured from the Real-World Model are passed to the 
Cloud by a Data Flow transmission system that connects the 
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virtual and real environments. The Virtual World EM Models 
generate simulated data to be compared with the Real-World 
Model measured data. 
 

  
Fig. 1. Logical Digital Twin Architecture. 

These real and virtual signals are analyzed by a Data 
Analytics Module that exploits Machine Learning (ML) and 
data-driven Artificial Intelligence (AI) capabilities to analyze 
features to detect faults within each EM. Furthermore, this 
module estimates RUL and FR that represent the state of the 
health of each motor. The results are presented to the user 
through the Visual Feedback System.  

III. ELECTRIC MOTOR MODEL 

In this section, the simulation models considered for 
developing the real, and virtual EV models are presented. The 
EV is assumed to be characterized by four independent EMs 
and each EM has been represented by the closed-loop 
electromechanical dynamics of the motor. Furthermore, each 
EM includes subsystems representing the EM speed sensors, 
the EM temperature dynamics, and vibrations. Faults can be 
activated or deactivated on these different subsystems.  

A. EM Closed-Loop Dynamics 

For this example, the EM was a Permanent Magnet 
Synchronous Motor (PMSM) [9]. The closed-loop model of 
the motor was represented using a model-based control 
approach exploiting the Clark and Park transform methods, 
and a Field Oriented Control (FOC) approach [10]. The 
closed loop dynamics of the EM includes a set of Proportional 
Integral (PID) controllers. For a description of the PMSM 
modelling and FOC methods the reader is referred to [11]. In 
the approach, the variables to interface the controlled PMSM 
with the rest of the DT-based system are the reference motor 
speed 𝜔௥ [rpm]. This is computed from the vehicle reference 
speed, and the measured speed of the i-th EM 𝜔௜[rpm] with 
𝑖 ∈ {1,2,3,4} which drives the different EM subsystems 
dynamics presented in the following sections. 

B. EM Sensor Speed Model 

Each EM has a velocity sensor to measure the rotational speed 
𝜔௜[rpm]. The EM model to emulate the virtual DT is not 
affected by any noise or disturbance. On the other hand, the 
real-world model of the EM speed sensor contains the effects 
of noise and faults [12]. It is modelled by introducing a white 
noise additive signal 𝑛௦,௜(𝑡) on the speed 𝜔௠,௜ measured from 
the sensor, whereas the fault is modelled as a constant offset 
signal 𝑓ఠ(𝑡) = 15 [rpm], so that: 

𝜔௠,௜(𝑡) = 𝜔௜(𝑡) + 𝑛௦,௜(𝑡) + 𝑓ఠ(𝑡)  (1) 
In the case of the DT virtual model 𝜔௠,௜(𝑡) = 𝜔௜(𝑡). 

C. EM Temperature Model 

Changes in EM temperature dynamics represent the effects of 
an EM internal insulation system faults or loss of performance 
of the EM colling system. To develop an EM temperature 
model to represent the fault and fault-free operating 
conditions, a model of motor heating dynamics has been 
found from analysis of the dataset from Paderborn University 
[13]  and collecting data in both normal and faulty operating 
conditions. By using a black-box system identification 
method [14], a discrete-time state-space model has been 
identified in the form: 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)    (2) 
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)    (3) 

where 𝑦 = 𝑇௜ [C] is the i-th EM temperature, 𝑢 = 𝜔௜ [rpm] is 
the related motor output speed, 𝑥 ∈ ℝ௡ೣ  is the state-space 
model state vector. The state-space matrices are: 

(𝐴, 𝐵, 𝐶, 𝐷) ∈ ൛൫𝐴௙ , 𝐵௙ , 𝐶௙ , 𝐷௙൯, (𝐴௖ , 𝐵௖ , 𝐶௖, 𝐷௖)ൟ (4) 

where ൫𝐴௙ , 𝐵௙ , 𝐶௙ , 𝐷௙൯ are matrices describing the EM in 
temperature faulty conditions and (𝐴௖, 𝐵௖ , 𝐶௖ , 𝐷௖) are matrices 
relating to fault-free operating conditions. The real-world EM 
model also has an additive white noise 𝑛்೔

(𝑡) signal affecting 
the measured temperature (that is neglected in the DT virtual 
world model) such that  

𝑦(𝑡) = 𝑇௜(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + 𝑛்೔
(𝑡).  (5) 

D. EM Vibration Model 

Vibrations are defined as changes in the acceleration 𝑎௜(𝑡) 
over the direction normal to the surface of the i-th EM stator. 
Each EM is characterized by a certain vibration frequency 
spectrum related to the corresponding EM rotational speed. 
Changes in the spectrum would reflect a fault affecting the 
EM components e.g., damaged bearings. Modelling dynamics 
of EM vibration is a complex task that in the proposed 
approach has involved an identification procedure like the 
method used for modelling the EM temperature dynamics. In 
the proposed approach, a dataset from the Case Western 
Reserve University [15] has been considered. This dataset 
contains both fault-free and faulty data relating to bearing 
damage conditions. By switching models’ coefficients using 
the fault activation command signals, the bearing fault is 
activated/deactivated in the i-th EM. 

E. Comparison of Faulty and Fault-Free Conditions 

The comparison of EMs subsystems behavior in fault and 
fault-free conditions is shown in Figure 2. The plots include: 
the fault and noise free virtual system outputs (blue lines), the 
real system fault-free outputs (dotted red lines) and the real 
system faulty outputs (dashed yellow lines). These signals are 
typical examples of the type of signals to be evaluated by the 
data analytics module to detect the various faults affecting the 
EMs and related subsystems. 
 



  

IV. ELECTRIC MOTOR MODEL 

In this section, the data analytics module is presented. The 
module is logically composed of two subsystems: (1) fault 
detection system that detects faults occurring on the i-th EM; 
(2) the State of Health (SoH) monitoring system that estimates 
RUL and FR percentage of the i-th EM. Furthermore, a 
discussion of the data transmission flow connecting the real-
world vehicle to the cloud is provided. 

A. Data Analytics Module: Fault Detection System 
The fault detection system is composed of a set of fault 
detection modules to detect different faults associated with 
each EM. In the proposed approach, three fault detection 
modules were developed to detect the bearing, sensor speed 
and temperature faults. These modules have been structured 
as shown in Figure 3. Data measured from the real-world 
model and obtained from the DT virtual model are compared 
by a data-driven ML algorithm that generates features 𝑓௜,௝(𝑘). 
The ‘features’ are signals that have no physical meaning and 
indicate if (based on the analysed samples) the j-th fault 
affects the i-th EM. The features therefore can assume two 
values, corresponding to the estimated faulty ൫𝑓௜,௝(𝑘) = 0൯ or 

fault-free ൫𝑓௜,௝(𝑘) = 1൯ conditions. The evaluated features are 
collected within a buffer of a length defined during the DT-
based system setup. The averaged values of the features 
collected within the buffer are then computed and compared 
against a predefined threshold value, resulting in the final 
‘fault-free’ vs ‘faulty’ estimate. 

Fig. 2. Comparison of EM signals in Faulty and Fault-free 
conditions with respect to the DT virtual model. 

 
The data-driven fault extraction algorithm was developed by 
using Supervised Learning methods. In particular, the speed 
sensor and vibration fault features were generated by 
analysing the data using Neural Networks (NNs) [16] trained 
to provide an output feature value  𝑓௜,௝(𝑘) ∈ {0,1}. On the 
other hand, the temperature fault features were generated by 

comparing samples given from the real-world and DT 
systems using a Support Vector Classifier (SVC) [17] 
computing the output feature signal 𝑓௜,௝(𝑘) ∈ {0,1}. The NNs 
and SVC algorithms are presented briefly in the following 
together with some details about the training phase. 
 
Neural Network. An artificial NN is a computational model 
inspired by the human brain structure, that can learn and 
replicate nonlinear behaviour from analysis of available data 
used during the training phase [18]. The NN is composed of 
three layers of Radial Basis Function neurons with 2 neurons 
in the input layer, 25 neurons in the hidden layer and 1 output 
layer neuron. The NN has been trained with a dataset of real-
world system measured data and DT virtual model signals, 
and the related labels indicating the fault-free and faulty 
operating conditions were also provided. The NN training was 
performed using the back-propagation algorithm to calibrate 
network hyperparameters. The training validation 
performance was quantified as 80% of correctly classified 
samples for the speed sensor fault NN and 75% for the 
vibration fault NN. 
 
Support Vector Classifier:  A SVC has been selected to detect 
temperature fault features. For this problem, this approach is 
more suitable due to the intrinsic classification-oriented 
nature of Support Vector-based policies and provides more 
degrees of freedom in the algorithm design.  It acts directly 
on the internal structure of the ML-algorithm and formulates 
the identification problem in the most suitable form [19].  In 
the classification theory, support Vector-based methods can 
be used to find the maximum separating margin for a linearly 
separable dataset by mapping samples to a hyperspace 
defined according to the available data [20]. The distance 
between all these points and the line is the maximum possible 
among all possible decision boundaries, making it optimal. In 
the proposed approach, the labelled temperature data obtained 
from the real-world model and from the DT system are used 
to train the SVC that is then used to detect features 
corresponding to the related fault. The validation results 
achieved by the trained SVC indicate 83% fault detection 
performance. 
 

 
 

Fig. 3. DT-based fault detection algorithm structure. 

Machine Learning Feature Extraction System Training. To 
develop the SVC and NN feature extraction systems, the data 
were first separated into the training, testing and validation 
subsets. Each of these datasets is composed of a set of input 
signals (measurements from DT and the real-world system) 
and the related labels indicating a fault or fault-free condition 
in the real-world vehicle system. The ML methods were then 
trained to approximate the mapping between the input data 



  

and the output labels. Recall that the features generated by the 
ML methods are variables belonging to the set [0,1]. By 
averaging the values of the features collected in a buffer (of 
predefined length), the averaged buffer value can be 
computed and compared with the threshold value (a user-
defined parameter). When the average buffer value is higher 
than the threshold value, the system is considered in fault free 
conditions, whereas if the value is lower than the threshold 
the system concludes it is a faulty condition. The value of the 
threshold is selected by the designer according to the 
dynamics of the subsystem, the fault, and the averaged value 
of the buffer and related size. Because of the different aspects 
representing the averaged featured value dynamics, the 
threshold value, as for the buffer size and other parameters 
represents a tuning parameter to be adjusted during the 
software setup phase. 
 
More specifically, the extracted features 𝑓௜,௝(𝑘) are averaged 

within buffers 𝑏௜,௝ ∈ ℝ
ே್೔,ೕ  of dimensions 𝑁௕௜,௝

, with 𝑖 ∈

{1,2,3,4} indicate the i-th EM and 𝑗 ∈ {1,2,3}  refers to the j-
th fault (e.g., 𝑗 = 1 indicates the i-th EM speed sensor fault). 
The values stored within the buffer are iteratively updated 
according to a First-In Last-Out (FILO) approach, and only if 
the measured vehicle speed is positive, i.e., only if the vehicle 
is moving. The averaged value of the buffer 𝑏௜,௝(𝑘), indicated 
by 𝑓௜̅,௝(𝑘),  is then iteratively computed and compared with 
the threshold 𝑓௜̅,௝

௧௛ such that 

𝑓௜̅,௝
஺௟௔௥௠(𝑘) = ቊ

1    𝑖𝑓
0  𝑖𝑓

  
𝑓௜̅,௝(𝑘) ≥  𝑓௜̅,௝

௧௛

𝑓௜̅,௝(𝑘) <  𝑓௜̅,௝
௧௛

  (6) 

where 𝑓௜̅,௝
஺௟௔௥௠(𝑘) is the fault detection alarm set to 1 if a fault-

free condition is detected and set to 0 in a faulty state. The 
value of the 𝑓௜̅,௝

஺௟௔௥௠ is then provided to the user, informing 
them about the state of each EM subsystem. 

B. Data Analytics Module: SOH Monitornig Systems 
The fault alarm signals defined by the fault detection systems 
are also used to evaluate the Failure Rate and the Remaining 
Useful Lifetime (RUL) of the EM according to the detected 
conditions of the EM components. The FR provides an 
estimate of the failure rate due to different faults detected 
affecting the EM. The RUL gives an estimate of the remaining 
lifetime of the EM with respect to actual and past faults 
degrading the motor performances. In the proposed approach, 
the FR of the i-th EM is defined as 

𝐹𝑅௜(𝑡) = 100 ∑ 𝑏ത௞,௝(𝑘)
௡೑

௞ୀଵ
𝐹ത௞,௝

஺௟௔௥௠(𝑘)
ଵ

ଶே್ೖ,ೕ

  (7) 

where 𝑛௙ is the number of faults considered in the analysis, 
the variable 𝐹ത௞,௝

஺௟௔௥௠ is defined according to the instantaneous 

value of the fault alarm signal 𝑓௞̅,௝
஺௟௔௥௠(𝑡) such that 

𝐹ത௞,௝
஺௟௔௥௠(𝑡) = ቊ

1    𝑖𝑓
2    𝑖𝑓

  
𝑓௞̅,௝

஺௟௔௥௠(𝑡) = 1

𝑓௞̅,௝
஺௟௔௥௠(𝑡) = 0

 (8) 

and 𝑏ത௞,௝(𝑡) represent the sum of values of entries stored in the 
buffer 𝑏௞,௝(𝑡) at the t-th time instant. The RUL of the i-th EM 
is estimated as the percentage of the nominal initial RUL such 
that  

𝑅𝑈𝐿௝(𝑡) = 100 + min ቆ0, − ൬− ln ൬
∫ ிതೖ,ೕ

ಲ೗ೌೝ೘(௧)ௗ௧

௧
൰൰

ିଵ

ቇ (9) 

 

where the term ൬− ln ൬
∫ ிതതതത

ೖ,ೕ
ಲ೗ೌೝ೘(௧)ௗ௧

௧
൰൰

ିଵ

represents the 

degradation function i.e., the loss of lifetime of the electric 
motor due to the detected faults. The nominal RUL is 100% 
and it is a decreasing monotonic function. This effectively 
considers the effect of the previous faults also in the case 
when those disappear and permits to estimate the RUL as a 
monotonically decreasing function. 

C. Data Flow Analysis 
A key element of DT technology is the data transmission 
system needed to connect the real-world system to the 
cloud/edge environment where the DT model and data 
analytics algorithms reside. In modern automotive 
applications, EV could be fully connected, and large amounts 
of measured data could be transmitted. However, in practice, 
storing and sharing such data will usually be limited by the 
transmission bandwidth available. For this reason, the DT 
system should be designed assuming a limited data 
transmission rate. In the proposed approach, the DT-based 
system has been designed to operate with a transmission 
frequency of 1 Hz i.e., measured real-world data are 
transmitted to the cloud by sending only one sample of each 
measured signal at each second. The DT virtual model 
simulated with a sampling frequency of 10 Hz, whereas the 
data analytics algorithms are executed with a frequency of 1 
Hz. Signals transmitted to the cloud are: the measured real 
vehicle speed, the measured EM temperature, vibration and 
speed, for a total of 13 samples transmitted every second. 
Assuming that each sample is represented by a floating-point 
variable requiring 4 bytes for its digital 32-bit representation, 
the amount of data transmitted at each sampling instant from 
the vehicle to the cloud is 52 Bytes. This is considered 
reasonable for this application. Note that in reality the data 
transmission rate will be higher once a transmission protocol 
with safety/security features is included. 
 
The design of the transmission system and related sizing of 
the DT-based fault detection algorithm structure were 
performed considering the data transmission specifications. 
The system has been calibrated to provide feedback with a 
certain time-delay between the activation of the fault and 
related correct fault detection signal. The time-delay is related 
to the number of features collected and evaluated iteratively 
by the system. By increasing the data transmission speed, it is 
possible to increase the number of samples evaluated from the 
system at each iteration. Increasing the data transmission rate 
enables an increase in the number of samples evaluated, 
reducing the time interval required from the system to detect 
a fault. Changes in the data-transmission flow would need an 
adjustment of buffer size and related averaged buffer 
threshold values used to evaluate the faulty conditions. This 
modification would be customized for the different 
subsystems and the related faults considered from the DT 
system to reduce the time interval required to detect the 



  

fault/fault-free conditions after the activation/deactivation of 
each fault.      

V. SIMULATION RESULTS  

In this section, the simulation performance of the proposed 
DT-based demonstrator is described. The system detects the 
activation/deactivation of faults affecting the individual 
electric motors and estimates the corresponding Failure Rate 
and Remaining Useful Lifetime of each EM.  

The demonstrator front end is shown in Figure 4. The real-
world simulated system is connected to the simulated cloud 
environment including the vehicle digital twin simulation 
model and the data analytics module. A set of switches 
activate/deactivate different faults affecting the different 
motors. The data analytics modules return the fault detection 
signals that are displayed on the set of green (fault-free) and 
red (faulty) lamp lights.  

The Failure Rate and the Remaining Useful Lifetime 
computed by the data analytics module are shown in the 
graphs at the bottom of the demonstrator. Motors affected by 
more faults tends to have a RUL decreasing more rapidly than 
the fault-free EMs. In a similar manner, an EM affected by 
more faults tends to have a higher value of the Failure Rate 
(which reduces when the vehicle is not moving). 
 

 
Fig. 4. Digital Twin demonstrator simulation system. 

To validate the performance of the proposed DT-based fault 
monitoring approach, the demonstrator has been exploited to 
simulate different fault scenarios affecting the electric motors. 
In the following, one the different EMs is subject to different 
faults and demonstrate the effectiveness of the approach. 
Figure 5 shows the signals generated from the real-world EV 
EM model (red lines) and the related DT simulation system 
(blue lines). 

The faults affecting the considered EM are: the bearing fault 
is activated at 𝑡 = 1116 s, deactivated at 𝑡 = 2215 and 
activated again at 𝑡 = 5222 s; the speed sensor fault is 
activated between 𝑡 = 2215 s and 𝑡 = 3369 s, and activated 
again at 𝑡 = 5222 s; the temperature fault is activated at 𝑡 =
3370 s, deactivated at 𝑡 = 4417 s, and activated again at 𝑡 =
5222 s. 
 
The performance of the proposed DT-based data-driven fault 
detection approach is shown in Figure 6, where the extracted 
feature signals (blue lines), the fault activation signals (red 
lines), the averaged feature values (yellow lines) and the fault 
alarm signals (purple lines) are shown for different motors. 
The ability of the proposed method to detect the activation 
and deactivation of faults is demonstrated, and detection 
delays relatively small. 
 
The vibration fault signal change is detected with an averaged 
delay of 85 s, the speed sensor data is detected with an 
averaged delay of 76 s and the temperature fault with an 
averaged delay of 141 s. 

 
Fig. 5. Real-World model and Digital Twin signals 

These detection intervals could be reduced by increasing the 
complexity of the selected data-driven algorithms (e.g., 
increasing the transmission rate or adjusting the average 
featured buffer size and update policy). Only a limited 
number of false alarms (each of limited duration) are detected 
relating to the bearing fault, around 𝑡 = 5700 s, due to the 
change of dynamics that is not captured by the DT model and 
thus it is wrongly considered as a faulty condition. Finally, the 
estimated Failure Rate and the Remaining Useful Lifetime of 
the selected EM are shown in Figure 7. 
 



  

 

 
Fig. 6. Fault detection algorithms signals 

The estimated FR of the EM tends to increase when more 
faults are detected on the different EM components, whereas 
it decreases when the EM operates in fault-free conditions. On 
the other hand, the slope of the trajectory shown in the lower 
plot of Figure 7 shows how the estimated RUL tends to 
decrease rapidly when more faults are detected and more 
slowly in fault-free conditions. 
 

 
Fig. 7. State of Health monitoring algorithms signals 

VI. CONCLUSIONS 

The application of Digital Twin technology to the State of 
Health monitoring problem of Electric Motors in Electric 
Vehicles has been proposed. Different data-driven Machine 
Learning methods, such as Neural Networks and Support 

Vector Classifier, were applied to detect faults, based on a 
comparison of real-world and virtual model signals. 
Furthermore, the features were exploited for estimating 
Failure Rate and Remaining Useful Lifetime of each Electric 
Motor. A set of simulation scenarios was considered for 
evaluating the performance of the system. Future research 
directions will consider the application of the proposed 
approach to other Electric Vehicle components involving 
more complex and interconnected subsystem dynamics. 
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